




S2). Consequently, genetic variation in male CHCs was subject
to a similar overall pattern of stabilizing selection when ex-
pressed in either males or females. Unlike male fitness, however,
the negative genetic correlation between CHCgmax

2 and female
fitness was small and nonsignificant (Table 2).
Diagonalization of the CHCgmax

2 − fitness covariance matrix
revealed two genetic principle components (i.e., eigenvectors g1
and g2) that accounted for all of the genetic variance in these
three traits (eigenvalues: λ1 = 57.8%, λ2 = 42.2%). These ei-
genvectors differ primarily in the genetic association of male and
female fitness, representing sexually antagonistic and sexually
concordant fitness variation, respectively (i.e., segregating var-
iants affecting the fitness of each sex in the opposite or same
direction, respectively) (Table 2). These two axes of fitness var-
iation, generated from a separate genetic analysis of male and
female fitness alone, are displayed in Fig. 1. Because male and
female fitness are necessarily measured on different individuals,
we could not construct a single mixed model to directly test
whether sexually concordant or sexually antagonistic variation
was more closely associated with CHCgmax

2. However, plots of
the best linear unbiased predictors (BLUPs) of the three traits
suggest stabilizing selection through sexually concordant but not
sexually antagonistic fitness variation (Fig. 2). This finding sug-
gests that individual males deviating in either direction from the
CHCgmax mean tend to carry unconditionally deleterious alleles
as opposed to those alleles harmful to males but beneficial to
females (i.e., sexually antagonistic alleles).

Discussion
Characterizing evolutionary optima and hence, determining what
limits directional evolutionary change have proven to be re-
markably difficult empirical challenges (5, 11, 37). We have
shown that a set of traits known to be under strong directional
selection measured through one fitness component (male mating
success) is, in fact, under net stabilizing selection when fitness is
considered in a more complete fashion. In particular, male
CHCs do not evolve in response to directional sexual selection,
although alleles for higher male mating success are segregating
in D. serratapopulations (14). Instead, these sexually selected
male displays are held at an evolutionary optimum by overall

stabilizing selection on the genetic variation underlying the traits.
The pleiotropic costs generating opposing natural selection are
not known in D. serrata, although their existence is inferred from
the rapid decay in the response of CHCs to artificial selection
when this selection was stopped (14). Such costs may arise from
the effects on other fitness components of CHCs themselves
(e.g., desiccation resistance) (38, 39) or the pleiotropic effect of
the underlying genes on other traits under selection (e.g., alloca-
tion tradeoffs arising through condition dependence) (25). Un-
derstanding the nature of these costs will be an important goal for
future work.
Despite a predominance of stabilizing selection on CHC ge-

netic variance, a negative genetic covariance was observed be-
tween log-contrast (Z)-9-C25:1 and both male and female fitness
(Table 1), indicating directional selection for a lower relative
concentration of this trait through both sexes. Stabilizing selec-
tion was also strongest on this trait (Table S1), with the net effect
of linear and nonlinear selection predicting a much larger re-
duction in genetic variance in this trait than in any of the other
CHCs (Table S3). Consistent with this finding, genetic variance
in (Z)-9-C25:1 is more than an order of magnitude lower than for
all other CHCs in this population (25). However, this CHC is not
the smallest in relative concentration on the male cuticle (40),
and why lower relative concentrations of this trait do not evolve
in this population remains unexplained by our analysis. One
possibility is that our fitness measures may have been incomplete
in some way, giving a misleading picture of the selection acting
on this trait (SI Text).
The classic expectation for the evolution of male sexual dis-

plays involves an initial phase of exaggeration driven either by
sexual selection alone (41, 42) or a combination of natural and
sexual selection (43–45) that is eventually halted by opposing
natural selection. As shown by the Robertson–Price Identity, a
directional change in the male trait mean requires a positive
genetic covariance between it and fitness. After halted by natural
selection, however, this covariance between the trait and total
fitness can no longer be substantial. Given the likely rapid nature
of this exaggeration phase (22), contemporary populations are
more likely to be at an evolutionary limit for male display traits,
experiencing no additional directional change, which has been
observed in natural populations (6, 20, 46). If male traits reside
at an evolutionary optimum, in the absence of direct benefits of
mate choice, the maintenance of costly female preferences may
depend on the indirect benefits that females gain from discrim-
inating against males carrying a greater number of deleterious
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mutations that shift their phenotypes farther from the optimum
(34, 47, 48).
When the sexes were considered separately, our multivariate

analyses suggest that stabilizing selection on male CHC genetic
variance was generated through both male and female pheno-
types. Nevertheless, male and female fitness covaried negatively
(Fig. 1), consistent with other estimates of the intersex genetic
correlation for fitness (49), and their joint analysis with CHCgmax
suggested stabilizing selection primarily through male rather than
female phenotypes (Table 2). Additional investigation suggested
that stabilizing selection on CHCgmax genetic variance seemed to
arise not from sexually antagonistic fitness variation but rather,
from unconditionally deleterious fitness effects (Fig. 2). It has
been recently suggested that a negative intersex correlation for
fitness may result from a small number of loci at which sexually
antagonistic alleles of potentially large effect are segregating at
intermediate frequencies, whereas allelic effects at the majority
of loci, including most new mutations, are likely to be sexually
concordant (48). Our results suggest that, although they may
contribute relatively little to standing genetic variance (25, 30,
50), alleles with sexually concordant deleterious effects may have
a large impact on the evolution of male sexually selected traits
and female preferences for them.
More generally, evolutionary biologists have had a preoccu-

pation with directional selection that has resulted in much of the
nonlinear selection estimated on traits being ignored (51). In
particular, recent metaanalyses (3, 5, 7) have highlighted the
current lack of evidence for stabilizing selection in nature. In the
presence of pleiotropy, much of the stabilizing selection pre-
dicted to be present in natural populations is likely to be ap-
parent in nature; selection measured on the phenotype of one
trait is likely to be a consequence of selection on correlated traits
(52). Pleiotropy also tends to restrict the distribution of the
majority of genetic variance to a few trait combinations (11, 49).
Under these conditions, stabilizing selection will be stronger on
trait combinations than individual traits (34). Furthermore, de-
tecting stabilizing selection directly on the genetic variance of
traits will be more effective than phenotypic selection analyses
if confounding effects of environmental covariances between
traits and fitness obscure the fitness-trait genetic associations
(32, 34, 53). Using the multivariate Robertson–Price Identity to
quantify the genetic covariance between trait deviations and
fitness may, therefore, provide a way of detecting this missing
stabilizing selection.

Materials and Methods
Breeding Design. Using a previously described outbred and laboratory-
adapted stock population of D. serrata (36, 54), we conducted a breeding
design involving 91 sires mated to each of four dams implemented in three
blocks consisting of 30, 30, and 31 sires, respectively, that spanned five
generations of the laboratory population. As previously described, the fit-
ness of 1,111 female and 1,371 male offspring was assayed in the standard
laboratory environment (i.e., yeast medium) to which the population was
long adapted (SI Text) (29). These assays were designed to capture the major
components of fitness relevant to the normal maintenance of the stock
population (SI Text). In brief, female fitness was measured as the total
number of adults offspring produced over 48 h by a single female when held
together with a random stock male. This measure includes her fecundity and
the subsequent survival to emergence of her offspring. Male fitness was
measured in an assay in which a single genetic male competed with two
random stock males (each homozygous for a recessive orange eye mutation)
for 72 h to fertilize a single random (homozygous orange eye) stock female.
Under such conditions, the number of adult offspring sired by a male reflects
his competitive mating success, the subsequent productivity of the female
with which he mated, and the survival to emergence of his male and female
offspring. In the analyses below, male fitness was calculated as the ratio of
adult offspring sired by the genetic male relative to the two stock males
after removing all genetic individuals that failed to produce any offspring
(SI Text). Before analysis, these values were transformed as previously de-
scribed (25, 29) and standardized [N ∼ (0, 1)]; the resulting distributions were

approximately normal (unimodal and symmetrical). To address concerns
about the possible effects that such data culling and manipulation may have
on the interpretation of the results (55), we repeated our main analyses by
estimating the genetic association of both CHCgmax and CHCgmax

2 with male
fitness (see below) through a generalized linear mixed model that used all
of the male fitness data (i.e., zeros included) on its original scale (SI Text,
Tables S4 and S5, and Figs. S1–S3).

CHCs were assayed on 1,114 separate sons within the context of a sexual
encounter by presenting the male with two random stock females (25). After
mating occurred, CHCs were extracted using standard protocols and ana-
lyzed by gas chromatography (56), and the concentrations of each of nine
previously identified CHCs (57) were determined by integration. Consistent
with all previous work on these traits in this species, values were expressed
as proportions of the total concentration for each individual to remove
technical error associated with quantifying absolute abundances and then
log contrast–transformed to break the unit sum constraint inherent in such
compositional data (58) using (Z,Z)-5,9-C24:2 as the common divisor. The
resulting distributions of the log-contrast CHC were approximately normal.
These traits were standardized [N ∼ (0, 1)] before analysis.

As part of a separate analysis of the genetic basis of female mate pref-
erences for male CHCs, other daughters from this breeding design were used
in mate choice trials in which a single female was presented with five ran-
domly chosen males from the same stock population (56). CHCs were
extracted and quantified as above for the chosen male and one of the four
rejected males (randomly chosen) from each trial, yielding 3,315 males
in total.

Phenotypic Selection Analyses. Standardized directional sexual selection
gradients on the eight log-contrast CHCs were calculated in a phenotypic
analysis of these males using a standard first-order polynomial regression
model (59), including experimental block as a fixed effect. Significance was
determined using logistic multiple regression, because mating success is bi-
nomially distributed (60). Phenotypic sexual selection on CHCgmax was esti-
mated by scoring these males for the first eigenvector of the sire-level
covariance matrix for the eight log-contrast CHCs (gmax) (Table 1), which is
described in detail below. First- and second-order standard polynomial
regressions of mating success on these scored phenotypes (59) were then
used to estimate directional and quadratic selection (denoted β and γ,
respectively) with significance determined by logistic regression.

Robertson–Price Identity for Multiple Traits. The sire-level additive genetic
covariance matrix (G) for these eight traits was estimated by restricted
maximum likelihood (REML) using a standard mixed model in which dam
was nested within sire and including a fixed effect of experimental block
(25). Genetic variance in CHCβ was also estimated in a univariate version of
this model after first scoring males for the vector of directional sexual se-
lection gradients (β) from the phenotypic analysis above using CHCβ = βTZ,
where Z is a row vector of the eight observed CHC values for an individual
(34). The genetic covariances between fitness and the eight CHC traits were
estimated in separate bivariate mixed models, and the covariances were
then arranged as a column vector σA(w, z) separately for both male and
female fitness (Table 1).

An approach for estimating ϕ has not been previously determined (32). If
we recognize that transforming each trait to a deviation from its mean allows
a genetic analysis of squared trait deviations and hence, the measurement of
selection on the genetic variance (33, 34, 61), ϕ can be estimated at the sire
level using the standard mixed model used above for estimating G. The di-
agonal elements of ϕ are the genetic covariances between the squared
deviations for each trait and fitness, whereas the off-diagonal elements are
the genetic covariances between fitness and the cross-products of each bi-
variate combination of trait deviations. Unfortunately, estimating all of the
required covariances would require a covariance matrix of very large di-
mensionality (37 in our case) and consequently, was not feasible within the
context of a single mixed model. We, therefore, took the alternative ap-
proach of estimating each of the required covariances from separate bi-
variate mixed models, and we arranged the resulting genetic covariance
estimates into the symmetrical matrix ϕ (Table S1) separately for both male
and female fitness. This approach precluded any hypothesis testing based on
the entire ϕ matrix within a single framework, a problem that we circum-
vented by confining our hypothesis testing to the major axis of genetic var-
iance as explained below.

Given an estimate of ϕ and G, the matrix of partial regression coefficients
(Γ) between genotypic values of fitness and the products of the trait devi-
ations, analogous to γ in a phenotypic analysis, can be estimated as (equa-
tion 12 in ref. 32) (Eq. 4)
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Γ ¼ G−1   · ϕG−1: [4]

However, multicolinearity among our traits is high at the genetic level, and G
is, therefore, ill-conditioned, making its inverse numerically unstable. This
finding is likely to be a common problem, because it seems that genetic
covariances among suites of traits typically concentrate genetic variance to
a small number of independent trait combinations (34, 49). We therefore
restrict our interpretation to ϕ and ΔG.

Genetic Analyses Using CHCgmax as a Univariate Trait. Diagonalization of G
yielded its eigenvectors and associated eigenvalues, the first of which rep-
resented the linear combination of the original traits with the greatest ge-
netic variance (gmax) (62, 63). As with any eigenvector, gmax of a set of metric
traits is itself a metric trait, and phenotypic scores of individual sons from the
breeding design (CHCgmax) were calculated using CHCgmax = gmax

TZ, where Z
is a row vector of the eight observed log-contrast CHC values for an in-
dividual (34). These phenotypic scores for CHCgmax were then used in a ge-
netic analysis along with male and female fitness to calculate the sire-level
genetic covariance matrix (G) for these three traits by a three-dimensional
factor-analytic model fit using REML fit (64). Significance of the individual
(co)variances was determined by likelihood ratio tests. Directional selection
on the major axis of genetic variance in CHCs (CHCgmax) would be indicated
by a significant additive genetic covariance between CHCgmax and male and/
or female fitness (59).

Stabilizing selection on CHCgmax would not be detected as a covariance
with fitness, because individuals deviating from the CHCgmax optimum in
either direction would have similarly low fitness (34). These deviations were
therefore calculated as the square of the individual CHCgmax scores when
standardized to a mean of zero (CHCgmax

2). These deviations were then used

in place of the original CHCgmax scores in a genetic analysis along with male
and female fitness. Because CHCgmax

2 values were nonnormally distributed,
significance of the genetic correlation between them and male fitness was
determined by fitting a generalized linear mixed model by a Markov chain
Monte Carlo algorithm as implemented in the MCMCglmm package in R
(65); 10,000 posterior samples were generated using a weakly informative
inverse-Wishart prior, and significance of the correlation was determined
from whether the 95% bounds of the higher posterior density interval
overlapped zero.

To characterize the covariance structure of male and female fitness,
a genetic analysis was conducted on these two traits alone using the same
multivariate mixed model that was fit by REML. Breeding values were esti-
mated as BLUPs from this model. The two genetic principle components were
extracted by diagonalization of the sire-level covariance matrix, representing
sexually antagonistic and sexually concordant fitness variation. Fitness vari-
ation was reexpressed along these two axes by scoring the breeding values of
male and female fitness separately for these two eigenvectors. Directional
and stabilizing selection on CHCgmax arising from its association with these
two new fitness axes was then characterized using first- and second-order
polynomial regression on the CHCgmax breeding values calculated as BLUPs
from a univariate model. We emphasize that these relationships are ex-
ploratory only, and we have not presented statistical analyses supporting
them, because the BLUPS have not been estimated in a model that in-
corporated the genetic covariances of interest and hence are likely to be
subject to considerable bias (66).
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Sexual Selection on Cuticular Hydrocarbons in Drosophila serrata.
Three lines of evidence have established cuticular hydrocarbons
(CHCs) as a target of sexual selection in Drosophila serrata. First,
sexual selection gradients on CHCs have been measured on sev-
eral laboratory-adapted populations (1–3) and numerous natural
populations within a few generations of their collection from the
wild (4, 5), and in both cases, little genetic variance remains in the
direction of this selection (2, 4, 6). Second, artificial selection on
the multivariate combination of CHCs identified by these selec-
tion analyses as being preferred by females resulted in higher male
mating success (7). Third, CHCs exhibit a pattern of reproductive
character displacement along the Australian east coast that cor-
responds with the presence vs. absence of the related species,
D. birchii (8, 9). Laboratory mate choice trials reveal genetically
based differences in female mate preferences for male CHCs be-
tween sympatry and allopatry, and the resulting divergent sexual
selection estimated in the laboratory corresponds with the pattern
of character displacement in nature (9). Evolutionary manipula-
tions have shown that the pattern of reproductive character dis-
placement evolves as a consequence of the presence of D. birchii
(8) and that sexual selection generated by female choice in the
absence of D. birchii drives the evolution of the CHCs back to an
allopatric blend (10).

Fitness Measures and Data Manipulation. How best to measure fit-
ness is a controversial topic (11, 12) and often presents a sub-
stantial empirical challenge. The D. serrata stock population used
in the current study was maintained on a schedule in which adults
lifespan was only a few days, and our assays were designed to
capture the key components of fitness under these conditions.
Nevertheless, measuring fitness requires tracking individuals
throughout their life, necessitating a change in environment (e.g.,
reduced density and hence, competition), and our measures must,
therefore, be viewed as approximations.
Male fitness was calculated as the ratio of WT to orange-eye

individuals in the adult offspring produced by the female (after
adding a constant of one to each), and the resulting values were
ln-transformed. Female fitness was calculated as the total num-
ber of adult offspring emerging in each vial, and values were
square root-transformed. In both cases, the original distributions
were bimodal because of a peak corresponding to genetic in-
dividuals (i.e., sons or daughters from the breeding design) that
failed to produce any offspring. It is not known why these in-
dividuals failed to produce offspring, although experimental er-
ror was likely an important contributor (e.g., damage or death
caused by handling). Removal of these individuals resulted in
fitness distributions that were approximately Gaussian, and these
data were used in subsequent analyses. However, we recognize
growing concerns in the literature surrounding such data culling,
transformation, and standardization (13). Therefore, as de-
scribed below, we also confirm our central results concerning the
genetic association of both CHCgmax and CHCgmax

2 with male
fitness by a generalized linear mixed modeling that used all of
the male fitness data on its original scale.

Alternative Statistical Analyses Using Generalized Linear Mixed Models.
We used a generalized linear mixed model, implemented in the
MCMCglmm package (14) in R (15) and fit by a Markov chain
Monte Carlo routine, to estimate the genetic correlation between
CHCgmax and male fitness as well as the genetic correlation be-
tween CHCgmax

2 and male fitness. Male fitness was measured as

the absolute number of offspring sired by a genetic male (i.e., total
number of WT offspring) and included those replicates in which
the female produced only orange-eye offspring (i.e., the genetic
male failed to sire any offspring). CHCgmax and CHCgmax

2 were
modeled in separate but otherwise identical analyses. Although
the distribution of CHCgmax

2 on the phenotypic scale seemed
nonnormal, after conditioning on the random effects in the model
(i.e., sire, dam nested with sire, and the residual), a Gaussian
distribution fit the data well for both CHCgmax and CHCgmax

2

(Figs. S1 A and B and S2 A and B). Fitness was modeled using
a zero-inflated Poisson distribution, because preliminary analyses
indicated that zero inflation was severe: the observed number of
zeros exceeded that predicted under a standard Poisson model
by ∼36 times. Hence, two components were estimated for fitness
in each model, with the first estimating the variance in offspring
production under the expectation of a Poisson model and the
second estimating zero inflation under a binomial model. For the
Poisson component of fitness, additive overdispersion, on the la-
tent scale, was modeled as residual variance to estimate variation
in the Poisson process not defined by the mean (λ). For the zero-
inflation component of fitness, residual variation could not be
estimated, and therefore, it was fixed at a value of one. Similarly,
because at the individual level, zero and nonzero fitness cannot
occur simultaneously, the residual covariance between the Poisson
and the zero-inflated components of fitness could not be esti-
mated. Likewise, because CHCgmax and fitness were measured on
different individuals, the residual covariance matrix had no off-
diagonal elements. Hence, for each variance component (i.e., sire,
dam, and residual), the resultant (co)variance matrix was of order
3 × 3 (Tables S4 and S5).
The posterior distributions of the location effects and variance

components were estimated from 1,300,000 MCMC iterations
sampled at 100 iteration intervals after an initial burn-in period of
300,000 iterations. Weakly informative inverse Wishart priors
were used, with shape and scale set to 0.001. Overall, autocor-
relation between successive samples was low (<0.01), although
the properties of the zero-inflation process should be interpreted
with caution, because mixing was not as good for this compo-
nent; the effective sample sizes of CHCgmax and the Poisson
component of fitness at the sire level were approximated six
times greater than the zero-inflation process for fitness. Never-
theless, the posterior predictive distributions indicate that our
models fit the observed data well (Figs. S1 and S2). The com-
ponent of greatest interest is the correlation between the CHC
traits (i.e., CHCgmax and CHCgmax

2) and the Poisson com-
ponent of fitness, which we calculated by dividing the covari-
ance between the two traits by the geometric mean of the var-
iances [e.g., for the correlation between CHCgmax and fitness,
CorrCHCgmax; fitness ¼ CovCHCgmax; fitness=ðVarCHCgmax·VarfitnessÞ0:5]
for each of the 10,000 samples of the posterior distribution (Fig.
S3). We then assessed the significance of the correlations by
examining the portion of higher posterior density (HPD) in-
terval that did not overlap zero. The resulting sire-level (co)
variance/correlation matrices are presented in Tables S4 and S5
for CHCgmax and CHCgmax

2, respectively.

X-Linked Effects. The paternal half-sibling breeding design that we
used includes autosomal but not X-linked effects in the estimated
additive genetic (co)variances (because males are heterogametic
and genetic sons, therefore, all carry a Y-chromosome from their
father). X-linked additive genetic effects can be estimated by
a mixed linear model that takes advantage of other relationships
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within the breeding design but only if autosomal dominance is
assumed negligible (16). The use of this method is not recom-
mended for traits with low heritabilities (e.g., fitness), because

the resulting estimates can be strongly biased in the presence of
dominance (16). Inclusion of X-linked effects would, therefore,
require a more complex breeding design.
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Table S1. Genetic (i.e., sire-level) covariance matrices φ of male fitness (lower left) and female fitness (upper right)
with the products of the eight log-contrast CHCs traits when expressed as deviations from the population mean
with unit variance as described in Eq. 2

(Z,Z)-5,9-C25:2 (Z)-9-C25:1 (Z)-9-C26:1 2-Me-C26 (Z,Z)-5,9-C27:2 2-Me-C28 (Z,Z)-5,9-C29:2 2-Me-C30

−0.0275 −0.0838 −0.0168 −0.0372 −0.0451 −0.0409 −0.0153 −0.0292 (Z,Z)-5,9-C25:2

−0.1958 −0.0803 −0.0628 −0.0907 −0.0678 −0.0847 −0.0663 (Z)-9-C25:1

(Z,Z)-5,9-C25:2 −0.0173 −0.0056 −0.0116 −0.0043 −0.0055 0.0219 0.0140 (Z)-9-C26:1

(Z)-9-C25:1 −0.0103 −0.1058 −0.0114 −0.0288 −0.0198 −0.0321 −0.0194 2-Me-C26

(Z)-9-C26:1 −0.0237 −0.0063 −0.0324 −0.0197 −0.0248 0.0096 −0.0071 (Z,Z)-5,9-C27:2

2-Me-C26 −0.0017 −0.0039 −0.0173 0.0008 −0.0172 −0.0074 −0.0047 2-Me-C28

(Z,Z)-5,9-C27:2 −0.0352 −0.0320 −0.0345 −0.0302 −0.0335 0.0229 0.0254 (Z,Z)-5,9-C29:2

2-Me-C28 −0.0137 0.0062 −0.0212 −0.0126 −0.0352 −0.0220 0.0153 2-Me-C30

(Z,Z)-5,9-C29:2 −0.0267 −0.0187 −0.0085 −0.0291 −0.0190 −0.0259 −0.0014
2-Me-C30 −0.0142 0.0290 −0.0240 −0.0170 −0.0320 −0.0247 −0.0164 −0.0242

Genetic variances are given in bold, and covariances are not bold.

Table S2. Distribution of eigenvalues from the covariance matrices
quantifying the change in CHC genetic variance caused by
nonlinear selection alone (φ) or the combined effects of linear and
nonlinear selection (ΔG) arising separately through male and
female fitness

Eigenvector

Eigenvalues (males) Eigenvalues (females)

φ ΔG φ ΔG

1 0.0472 0.0471 0.1264 0.1222
2 0.0150 0.0147 0.0294 0.0293
3 0.0050 0.0045 0.0108 0.0108
4 0.0015 0.0015 0.0082 0.0076
5 −0.0075 −0.0075 −0.0027 −0.0030
6 −0.0158 −0.0167 −0.0222 −0.0231
7 −0.1175 −0.1261 −0.0303 −0.0304
8 −0.1634 −0.1695 −0.3588 −0.3915
Sum (absolute) 0.3729 0.3877 0.5887 0.6178
Prop (negative) 0.816 0.825 0.703 0.725

The proportion of negative eigenvalues was calculated as Prop(negative) =
Σj(negative eigenvalues)j/ Σj(all eigenvalues)j.
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Table S3. Within-generation change in G (i.e., ΔG) for eight log-contrast male CHCs caused by the combined
effects of linear and nonlinear selection through male fitness (lower left) and female fitness (upper right) calculated
using Eq. 3

(Z,Z)-5,9-C25:2 (Z)-9-C25:1 (Z)-9-C26:1 2-Me-C26 (Z,Z)-5,9-C27:2 2-Me-C28 (Z,Z)-5,9-C29:2 2-Me-C30

−0.0306 −0.0937 −0.0159 −0.0396 −0.0456 −0.0425 −0.0162 −0.0300 (Z,Z)-5,9-C25:2

−0.2282 −0.0775 −0.0706 −0.0923 −0.0729 −0.0874 −0.0690 (Z)-9-C25:1

(Z,Z)-5,9-C25:2 −0.0177 −0.0059 −0.0110 −0.0041 −0.0051 0.0221 0.0142 (Z)-9-C26:1

(Z)-9-C25:1 −0.0126 −0.1188 −0.0133 −0.0291 −0.0210 −0.0328 −0.0200 2-Me-C26

(Z)-9-C26:1 −0.0242 −0.0095 −0.0332 −0.0198 −0.0250 0.0094 −0.0072 (Z,Z)-5,9-C27:2

2-Me-C26 −0.0014 −0.0022 −0.0169 0.0006 −0.0181 −0.0078 −0.0051 2-Me-C28

(Z,Z)-5,9-C27:2 −0.0360 −0.0366 −0.0356 −0.0296 −0.0351 0.0227 0.0252 (Z,Z)-5,9-C29:2

2-Me-C28 −0.0134 0.0080 −0.0208 −0.0129 −0.0345 −0.0222 0.0151 2-Me-C30

(Z,Z)-5,9-C29:2 −0.0269 −0.0195 −0.0086 −0.0290 −0.0193 −0.0258 −0.0015
2-Me-C30 −0.0142 0.0290 −0.0240 −0.0170 −0.0320 −0.0247 −0.0164 −0.0242

Changes in genetic variance are given in bold, and covariances are not bold.

Table S4. Sire-level covariance matrix of CHCgmax and male fitness

Trait CHCgmax Fitness Zero-inflated fitness

CHCgmax 0.21 (0.12, 0.30) −0.36 (−0.96, 0.25) 0.29 (−0.67, 1.00)
Fitness −0.02 (−0.06, 0.02) 0.02 (<0.00, 0.05) −0.48 (−1.00, 0.63)
Zero-inflated fitness 0.03 (−0.05, 0.11) −0.02 (−0.06, 0.01) 0.04 (<0.00, 0.14)

Variances are in bold on the diagonal; genetic covariances are below the diagonal, and genetic correlations
are above the diagonal (italics). Values in parentheses denote 95% HPD intervals.

Table S5. Sire-level covariance matrix of the squared deviations of CHCgmax phenotypes
(CHCgmax

2) and male fitness

Trait CHCgmax
2 Fitness Zero-inflated fitness

CHCgmax
2 5.86 (3.45, 8.25) −0.53 (−0.98, 0.01) 0.47 (−0.44, 1.00)

Fitness −0.17 (−0.37, 0.05) 0.02 (<0.00, 0.05) −0.53 (−1.00, 0.48)
Zero-inflated fitness 0.21 (−0.20, 0.65) −0.02 (−0.06, 0.01) 0.04 (<0.00, 0.14)

Variances are in bold along the diagonal; genetic covariances are below the diagonal, and genetic correla-
tions are above the diagonal (italics). Values in parentheses denote 95% HPD intervals.
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